Thinning, fertilization, and crown position interact to control physiological responses of loblolly pine.
نویسندگان
چکیده
To examine physiological responses to thinning, fertilization, and crown position, we measured net photosynthesis (P(n)), transpiration (E), vapor pressure difference (VPD), stomatal conductance (g(s)), and xylem pressure potential (Psi(1)) between 0930 and 1130 h under ambient conditions in the upper and lower crowns of a 13-year-old loblolly pine (Pinus taeda L.) plantation six years (1994) after the treatments were applied. Photosynthetic photon flux density (PPFD) and air temperature (T(a)) within the canopy were also recorded. Needle P(n) of thinned trees was significantly enhanced by 22-54% in the lower crown, because canopy PPFD increased by 28-52%. Lower crown foliage of thinned plots also had higher E and g(s) than foliage of unthinned plots, but thinning had no effect on needle Psi(1) and predawn xylem pressure potential (0430-0530 h; Psi(pd)). Tree water status did not limit P(n), E and g(s) during the late-morning measurements. Fertilization significantly decreased within-canopy PPFD and T(a). Needle Psi(1) was increased in fertilized stands, whereas P(n), E and g(s) were not significantly altered. Upper crown foliage had significantly greater PPFD, P(n), VPD, g(s), E, and more negative Psi(1) than lower crown foliage. In both crown positions, needle P(n) was closely related to g(s), PPFD and T(a) (R(2) = 0.77 for the upper crown and 0.82 for the lower crown). We conclude that (1) silvicultural manipulation causes microclimate changes within the crowns of large trees, and (2) needle physiology adjusts to the within-crown environmental conditions.
منابع مشابه
Interactive effects of fertilization and throughfall exclusion on the physiological responses and whole-tree carbon uptake of mature loblolly pine
Few studies have examined the combined effects of nutrition and water exclusion on the canopy physiology of mature loblolly pine (Pinus taeda L.). Understanding the impacts of forest management on plantation productivity requires extensive research on the relationship between silvicultural treatments and environmental constraints to growth. We studied the physiological responses of 18-year-old ...
متن کاملYoung Modeling for I lntensi Loblolly Pine Plantations in Southeastern U S
Intensively managed loblolly pine stands are often subjected to a variety of silvicultural treatments at t ime of planting or shortly thereafter. However, most loblolly pine growth-and-yield models predict growth after crown closure has occurred. In this article, we describe the development and implementation of a system of equations designed to simulate growth of loblolly pine before the onset...
متن کاملMid-Rotation Silviculture Timing Influences Nitrogen Mineralization of Loblolly Pine Plantations in the Mid-South USA
Intensively managed loblolly pine (Pinus taeda L.) plantations often develop nutrient deficiencies near mid-rotation. Common silvicultural treatments for improving stand nutrition at this stage include thinning, fertilization, and vegetation control. It is important to better understand the influence of timing fertilization and vegetation control in relation to thinning as part of improving the...
متن کاملPost-fertilization physiology and growth performance of loblolly pine clones.
The physiological processes leading to enhanced growth of loblolly pine (Pinus taeda L.) following fertilization are not clearly understood. Part of the debate revolves around the temporal response of net photosynthetic rate (A(n)) to fertilization and whether the A(n) response is always positive. We measured light-saturated photosynthetic rate (A(sat)), dark respiration rate, growth and crown ...
متن کاملBranch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 19 2 شماره
صفحات -
تاریخ انتشار 1999